

OVABLEND® REC N85 R30

PC/ABS compound, non reinforced grade, with post-industrial raw material N85: high heat grade.

R30: with at least 30% of post-industrial polymeric raw material. In compliance with ISO 14021:2016, self-declaration validated by TÜV NORD, certificate number IT-25519/2024.

Color: available in black and in other colors on demand.

For injection molding of automotive and industrial parts, housings and small appliances articles.

RECOMMENDED PROCESSING PARAMETERS FOR INJECTION MOLDING					
DRYING CONDITIONS	BARREL TEMPERATURE	MOULD TEMPERATURE			
100 °C x 3 ÷ 4 hours	250 ÷ 280 °C	70 ÷ 90 °C			
Maximum moisture content after drying $\leq 0.02\%$	Standard melt temperature: 260°C				
PACKAGING					
25 Kg Bags, 1000 Kg Octabins, 750 Kg Boxes					

PROPERTIES	METL	UNIT	TYPICAL	
PROFERIES	METHOD			VALUES
PHYSICAL				VALUES
Density	ASTM D792	ISO 1183	gr/cm ³	1.14
Humidity Absorption (equilibrium, in air, +23°C – 50% RH)	INTERNAL METHOD		% %	0.20
Mould Shrinkage	INTERNAL METHOD		%	$0.4 \div 0.8$
Melt Flow Index MFI (260 °C - 5 Kg)	ASTM D1238 ISO 1133		g/10'	20
(1 2 3)			8.10	
MECHANICAL				
Tensile strength: stress at yield	ASTM D638	ISO 527-1,-2	MPa	50
strain at break	ASTM D638	ISO 527-1,-2	%	≥ 45
Flexural modulus	ASTM D790	ISO 178	MPa	2400
IZOD notched impact strength, at 23 °C	ASTM D256	-	J/m	500
Specimen dimensions 62.5 mm x 12.7 mm x 3.2 mm				
THERMAL				
VICAT softening temperature at 49 N-120 °C/h	ASTM D1525/B	ISO 306/B	°C	132
ELECTRICAL				
Surface resistivity	ASTM D257	IEC 60093	Ohm	1E16
Comparative tracking index (solution A, CTI)	VDE 0303-P1	IEC 60112	V	225
FLAMMABILITY				
Flammability UL94 (thickness 3.2 mm)	UL 94		Class	HB
Flammability UL94 (thickness 1.6 mm)	UL 94		Class	HB
Burning rate FMVSS302 (thickness 2.2/ 3.2 mm)	ISO 3795		mm/min	Passed

Our technical data are provided for guidance purpose only and are based on average values. The data are not meant to be used for specification or warranted purposes. Values may be affected by the design of the mold/die, the processing conditions and coloring/pigmentation of the product. Unless specified to the contrary, the data have been established on standardized test specimens at room temperature. All technical information is subject to continuous update, so the customer shall always ensure that the latest release of technical information is at his own disposal. It is the customer's responsibility to inspect and test our products in order to determine to his own satisfaction whether they are suitable for his intended uses and applications or used in conjunction with third-party materials. Unless specifically stated with reference to the specific color code, the products mentioned herein are not suitable for applications in the pharmaceutical, medical, dental and toys sectors, in contact with foodstuff or for potable water transportation.

Updating: January 2025 Printing date: 22 April 2025